A4 Article in conference proceedings
Higher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm (2019)
Wang, D., Cong, F., & Ristaniemi, T. (2019). Higher-order Nonnegative CANDECOMP/PARAFAC Tensor Decomposition Using Proximal Algorithm. In ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3457-3461). IEEE. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. https://doi.org/10.1109/ICASSP.2019.8683217
JYU authors or editors
Publication details
All authors or editors: Wang, Deqing; Cong, Fengyu; Ristaniemi, Tapani
Parent publication: ICASSP 2019 : Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
ISBN: 978-1-4799-8131-1
Journal or series: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN: 1520-6149
eISSN: 2379-190X
Publication year: 2019
Pages range: 3457-3461
Publisher: IEEE
Publication country: United States
Publication language: English
DOI: https://doi.org/10.1109/ICASSP.2019.8683217
Publication open access: Not open
Publication channel open access:
Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/63614
Additional information: 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing. 12-17 May 2019 Brighton, United Kingdom.
Keywords: signal processing
Free keywords: tensor decomposition; nonnegative CAN-DECOMP/PARAFAC; proximal algorithm; block principal pivoting; alternating nonnegative least squares
Contributing organizations
Ministry reporting: Yes
VIRTA submission year: 2019
JUFO rating: 1