A1 Journal article (refereed)
Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions (2019)
Sun, C., Mammen, N., Kaappa, S., Yuan, P., Deng, G., Zhao, C., Yan, J., Malola, S., Honkala, K., Häkkinen, H., Teo, B. K., & Zheng, N. (2019). Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions. ACS Nano, 13(5), 5975-5986. https://doi.org/10.1021/acsnano.9b02052
JYU authors or editors
Publication details
All authors or editors: Sun, Cunfa; Mammen, Nisha; Kaappa, Sami; Yuan, Peng; Deng, Guocheng; Zhao, Chaowei; Yan, Juanzhu; Malola, Sami; Honkala, Karoliina; Häkkinen, Hannu; et al.
Journal or series: ACS Nano
ISSN: 1936-0851
eISSN: 1936-086X
Publication year: 2019
Volume: 13
Issue number: 5
Pages range: 5975-5986
Publisher: American Chemical Society
Publication country: United States
Publication language: English
DOI: https://doi.org/10.1021/acsnano.9b02052
Publication open access: Openly available
Publication channel open access: Partially open access channel
Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/67697
Abstract
Copper-hydrides are known catalysts for several technologically important reactions such as hydrogenation of CO, hydroamination of alkenes and alkynes, and chemoselective hydrogenation of unsaturated ketones to unsaturated alcohols. Stabilizing copper-based particles by ligand chemistry to nanometer scale is an appealing route to make active catalysts with optimized material economy; however, it has been long believed that the ligand-metal interface, particularly if sulfur-containing thiols are used as stabilizing agent, may poison the catalyst. We report here a discovery of an ambient-stable thiolate-protected copper-hydride nanocluster [Cu25H10(SPhCl2)18]3- that readily catalyzes hydrogenation of ketones to alcohols in mild conditions. A full experimental and theoretical characterization of its atomic and electronic structure shows that the 10 hydrides are instrumental for the stability of the nanocluster and are in an active role being continuously consumed and replenished in the hydrogenation reaction. Density functional theory computations suggest, backed up by the experimental evidence, that the hydrogenation takes place only around a single site of the 10 hydride locations, rendering the [Cu25H10(SPhCl2)18]3- one of the first nanocatalysts whose structure and catalytic functions are characterized fully to atomic precision. Understanding of a working catalyst at the atomistic level helps to optimize its properties and provides fundamental insights into the controversial issue of how a stable, ligand-passivated, metal-containing nanocluster can be at the same time an active catalyst.
Keywords: nanoparticles; copper; hydrides; catalysts; density functional theory
Free keywords: catalytic hydrogenation; Cu nanocluster; hydride; single-site catalyst; thiolate
Contributing organizations
Related projects
- Metalli-molekyyli-rajapintojen nanorakenteet (NaMeMoInt)
- Häkkinen, Hannu
- Academy of Finland
- NANOSTRUCTURED METAL – MOLECULE INTERFACES
- Häkkinen, Hannu
- Academy of Finland
- Building atomistic understanding of metal-support interplay for ethanol reforming catalysis from theory and experiment
- Honkala, Karoliina
- Academy of Finland
Ministry reporting: Yes
Reporting Year: 2019
JUFO rating: 3