A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions (2019)


Sun, C., Mammen, N., Kaappa, S., Yuan, P., Deng, G., Zhao, C., Yan, J., Malola, S., Honkala, K., Häkkinen, H., Teo, B. K., & Zheng, N. (2019). Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions. ACS Nano, 13(5), 5975-5986. https://doi.org/10.1021/acsnano.9b02052


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatSun, Cunfa; Mammen, Nisha; Kaappa, Sami; Yuan, Peng; Deng, Guocheng; Zhao, Chaowei; Yan, Juanzhu; Malola, Sami; Honkala, Karoliina; Häkkinen, Hannu; et al.

Lehti tai sarjaACS Nano

ISSN1936-0851

eISSN1936-086X

Julkaisuvuosi2019

Volyymi13

Lehden numero5

Artikkelin sivunumerot5975-5986

KustantajaAmerican Chemical Society

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1021/acsnano.9b02052

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/67697


Tiivistelmä

Copper-hydrides are known catalysts for several technologically important reactions such as hydrogenation of CO, hydroamination of alkenes and alkynes, and chemoselective hydrogenation of unsaturated ketones to unsaturated alcohols. Stabilizing copper-based particles by ligand chemistry to nanometer scale is an appealing route to make active catalysts with optimized material economy; however, it has been long believed that the ligand-metal interface, particularly if sulfur-containing thiols are used as stabilizing agent, may poison the catalyst. We report here a discovery of an ambient-stable thiolate-protected copper-hydride nanocluster [Cu25H10(SPhCl2)18]3- that readily catalyzes hydrogenation of ketones to alcohols in mild conditions. A full experimental and theoretical characterization of its atomic and electronic structure shows that the 10 hydrides are instrumental for the stability of the nanocluster and are in an active role being continuously consumed and replenished in the hydrogenation reaction. Density functional theory computations suggest, backed up by the experimental evidence, that the hydrogenation takes place only around a single site of the 10 hydride locations, rendering the [Cu25H10(SPhCl2)18]3- one of the first nanocatalysts whose structure and catalytic functions are characterized fully to atomic precision. Understanding of a working catalyst at the atomistic level helps to optimize its properties and provides fundamental insights into the controversial issue of how a stable, ligand-passivated, metal-containing nanocluster can be at the same time an active catalyst.


YSO-asiasanatnanohiukkasetkuparihydriditkatalyytittiheysfunktionaaliteoria

Vapaat asiasanatcatalytic hydrogenation; Cu nanocluster; hydride; single-site catalyst; thiolate


Liittyvät organisaatiot

Muut organisaatiot:


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

Raportointivuosi2019

JUFO-taso3


Viimeisin päivitys 2024-08-01 klo 20:41