A1 Journal article (refereed)
Cross-Country Skiing Analysis and Ski Technique Detection by High-Precision Kinematic Global Navigation Satellite System (2019)


Takeda, M., Miyamoto, N., Endo, T., Ohtonen, O., Lindinger, S., Linnamo, V., & Stöggl, T. (2019). Cross-Country Skiing Analysis and Ski Technique Detection by High-Precision Kinematic Global Navigation Satellite System. Sensors, 19(22), Article 4947. https://doi.org/10.3390/s19224947


JYU authors or editors


Publication details

All authors or editors: Takeda, Masaki; Miyamoto, Naoto; Endo, Takaaki; Ohtonen, Olli; Lindinger, Stefan; Linnamo, Vesa; Stöggl, Thomas

Journal or series: Sensors

eISSN: 1424-8220

Publication year: 2019

Volume: 19

Issue number: 22

Article number: 4947

Publisher: MDPI AG

Publication country: Switzerland

Publication language: English

DOI: https://doi.org/10.3390/s19224947

Publication open access: Openly available

Publication channel open access: Open Access channel

Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/66453

Additional information: Lähde: CrossRef / 151119 MaL
181119 MR


Abstract

Cross-country skiing (XCS) embraces a broad variety of techniques applied like a gear system according to external conditions, slope topography, and skier-related factors. The continuous detection of applied skiing techniques and cycle characteristics by application of unobtrusive sensor technology can provide useful information to enhance the quality of training and competition. (1) Background: We evaluated the possibility of using a high-precision kinematic global navigation satellite system (GNSS) to detect cross-country skiing classical style technique. (2) Methods: A world-class male XC skier was analyzed during a classical style 5.3-km time trial recorded with a high-precision kinematic GNSS attached to the skier’s head. A video camera was mounted on the lumbar region of the skier to detect the type and number of cycles of each technique used during the entire time trial. Based on the GNSS trajectory, distinct patterns of head displacement (up-down head motion) for each classical technique (e.g., diagonal stride (DIA), double poling (DP), kick double poling (KDP), herringbone (HB), and downhill) were defined. The applied skiing technique, skiing duration, skiing distance, skiing speed, and cycle time within a technique and the number of cycles were visually analyzed using both the GNSS signal and the video data by independent persons. Distinct patterns for each technique were counted by two methods: Head displacement with course inclination and without course inclination (net up-down head motion). (3) Results: Within the time trial, 49.6% (6 min, 46 s) was DP, 18.7% (2 min, 33 s) DIA, 6.1% (50 s) KDP, 3.3% (27 s) HB, and 22.3% (3 min, 03 s) downhill with respect to total skiing time (13 min, 09 s). The %Match for both methods 1 and 2 (net head motion) was high: 99.2% and 102.4%, respectively, for DP; 101.7% and 95.9%, respectively, for DIA; 89.4% and 100.0%, respectively, for KDP; 86.0% and 96.5%, respectively, in HB; and 98.6% and 99.6%, respectively, in total. (4) Conclusions: Based on the results of our study, it is suggested that a high-precision kinematic GNSS can be applied for precise detection of the type of technique, and the number of cycles used, duration, skiing speed, skiing distance, and cycle time for each technique, during a classical style XCS race.


Keywords: skiing; satellite navigation

Free keywords: classical technique; cross-country skiing; kinematic GNSS; GPS


Contributing organizations


Ministry reporting: Yes

Reporting Year: 2019

JUFO rating: 1


Last updated on 2021-09-08 at 16:17