A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Predictive First-principles Modeling of a Photosynthetic Antenna Protein : The Fenna-Matthews-Olson Complex (2020)

Kim, Y., Morozov, D., Stadnytskyi, V., Savikhin, S., & Slipchenko, L. (2020). Predictive First-principles Modeling of a Photosynthetic Antenna Protein : The Fenna-Matthews-Olson Complex. Journal of Physical Chemistry Letters, 11(5), 1636-1643. https://doi.org/10.1021/acs.jpclett.9b03486

JYU-tekijät tai -toimittajat

Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajat: Kim, Yongbin; Morozov, Dmitry; Stadnytskyi, Valentyn; Savikhin, Sergei; Slipchenko, Lyudmila

Lehti tai sarja: Journal of Physical Chemistry Letters

eISSN: 1948-7185

Julkaisuvuosi: 2020

Volyymi: 11

Lehden numero: 5

Artikkelin sivunumerot: 1636-1643

Kustantaja: American Chemical Society

Julkaisumaa: Yhdysvallat (USA)

Julkaisun kieli: englanti

DOI: https://doi.org/10.1021/acs.jpclett.9b03486

Julkaisun avoin saatavuus: Ei avoin

Julkaisukanavan avoin saatavuus:

Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/67903


High efficiency of light harvesting in photosynthetic pigment-protein complexes is governed by evolutionary-perfected protein-assisted tuning of individual pigment properties and inter-pigment interactions. Due to the large number of spectrally overlapping pigments in a typical photosynthetic complex, experimental methods often fail to unambiguously identify individual chromophore properties. Here we report a first principles-based modeling protocol capable of predicting properties of pigments in protein environment to a high precision. The technique was applied to successfully uncover electronic properties of the Fenna-Matthews-Olson (FMO) pigment-protein complex. Each of the three subunits of the FMO complex contains eight strongly coupled bacteriochlorophyll a (BChl a) pigments. The excitonic structure of FMO can be described by an electronic Hamiltonian containing excitation (site) energies of BChl a pigments and electronic couplings between them. Several such Hamiltonians have been developed in the past based on the information from various spectroscopic measurements of FMO; however, fine details of the excitonic structure and energy transfer in FMO, especially assignments of short-lived high-energy sites, remain elusive. Utilizing polarizable embedding QM/MM with the effective fragment potentials (EFP) we were able to compute the electronic Hamiltonian of FMO that is in general agreement with previously reported empirical Hamiltonians and quantitatively reproduces experimental absorption and circular dichroism (CD) spectra of the FMO protein. The developed computational protocol is sufficiently simple and can be utilized for predictive modeling of other wild type and mutated photosynthetic pigment-protein complexes.

YSO-asiasanat: proteiinit; pigmentit (värijauheet); mallintaminen; spektroskopia

Vapaat asiasanat: pigment-protein complex; Fenna-Matthews-Olson protein; QM/MM; QM/EFP; effective fragment potential; polarizable embedding

Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty

OKM-raportointi: Kyllä

Raportointivuosi: 2020

JUFO-taso: 3

Viimeisin päivitys 2021-02-08 klo 10:23