A4 Artikkeli konferenssijulkaisussa
ISAdetect : Usable Automated Detection of CPU Architecture and Endianness for Executable Binary Files and Object Code (2020)
Kairajärvi, Sami; Costin, Andrei; Hämäläinen, Timo (2020). ISAdetect : Usable Automated Detection of CPU Architecture and Endianness for Executable Binary Files and Object Code. In CODASPY '20 : Proceedings of the 10th ACM Conference on Data and Application Security and Privacy. New York: ACM, 376-380. DOI: 10.1145/3374664.3375742
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Kairajärvi, Sami; Costin, Andrei; Hämäläinen, Timo
Emojulkaisu: CODASPY '20 : Proceedings of the 10th ACM Conference on Data and Application Security and Privacy
Konferenssin paikka ja aika: New Orleans, USA, 16.-18.3.2020
ISBN: 978-1-4503-7107-0
Julkaisuvuosi: 2020
Artikkelin sivunumerot: 376-380
Kirjan kokonaissivumäärä: 381
Kustantaja: ACM
Kustannuspaikka: New York
Julkaisumaa: Yhdysvallat (USA)
Julkaisun kieli: englanti
DOI: https://doi.org/10.1145/3374664.3375742
Linkki tutkimusaineistoon: https://github.com/kairis/isadetect
Avoin saatavuus: Julkaisukanava ei ole avoin
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/68398
Lisätietoja: Julkaisuun liittyvä tutkimusdata: https://etsin.fairdata.fi/dataset/80fa69af-addb-4f9a-b45c-c16011bae366
Tiivistelmä
Static and dynamic binary analysis techniques are actively used to reverse engineer software's behavior and to detect its vulnerabilities, even when only the binary code is available for analysis. To avoid analysis errors due to misreading op-codes for a wrong CPU architecture, these analysis tools must precisely identify the Instruction Set Architecture (ISA) of the object code under analysis. The variety of CPU architectures that modern security and reverse engineering tools must support is ever increasing due to massive proliferation of IoT devices and the diversity of firmware and malware targeting those devices. Recent studies concluded that falsely identifying the binary code's ISA caused alone about 10% of failures of IoT firmware analysis. The state of the art approaches detecting ISA for executable object code look promising, and their results demonstrate effectiveness and high-performance. However, they lack the support of publicly available datasets and toolsets, which makes the evaluation, comparison, and improvement of those techniques, datasets, and machine learning models quite challenging (if not impossible). This paper bridges multiple gaps in the field of automated and precise identification of architecture and endianness of binary files and object code. We develop from scratch the toolset and datasets that are lacking in this research space. As such, we contribute a comprehensive collection of open data, open source, and open API web-services. We also attempt experiment reconstruction and cross-validation of effectiveness, efficiency, and results of the state of the art methods. When training and testing classifiers using solely code-sections from executable binary files, all our classifiers performed equally well achieving over 98% accuracy. The results are consistent and comparable with the current state of the art, hence supports the general validity of the algorithms, features, and approaches suggested in those works.
YSO-asiasanat: tietoturva; esineiden internet; haittaohjelmat; prosessorit
Liittyvät organisaatiot
Hankkeet, joissa julkaisu on tehty
- APPIOTS
- Costin, Andrei
- Business Finland
OKM-raportointi: Kyllä
Raportointivuosi: 2020
Alustava JUFO-taso: 1