A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Spatial localization of hotspots in Fano-resonant plasmonic oligomers for surface-enhanced coherent anti-Stokes Raman scattering (2020)


Dutta, A., & Vartiainen, E. M. (2020). Spatial localization of hotspots in Fano-resonant plasmonic oligomers for surface-enhanced coherent anti-Stokes Raman scattering. Journal of the European Optical Society : Rapid Publications, 16, Article 8. https://doi.org/10.1186/s41476-020-00128-5


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatDutta, Arpan; Vartiainen, Erik M.

Lehti tai sarjaJournal of the European Optical Society : Rapid Publications

eISSN1990-2573

Julkaisuvuosi2020

Volyymi16

Artikkelinumero8

KustantajaSpringer

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1186/s41476-020-00128-5

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/68557


Tiivistelmä

Realization of Fano resonance in plasmonic oligomers is often exploited to design efficient plasmonic substrates for surface-enhanced coherent anti-Stokes Raman scattering. Disk-type Fano-resonant plasmonic oligomers are widely used to enhance the Raman signal of the probe material. Generally, hot spots are generated in those oligomers at different spatial locations at different wavelengths and only a few spatially overlapping hot spots at multiple wavelengths can be achieved with oblique incidence of excitation light. In this work, we proposed hexagonal gold nanoparticle based Fano-resonant plasmonic oligomers that can yield higher number of spatially overlapped hot spots compared to the disk type oligomers even with the normal incidence of excitation light. The oligomers were numerically modelled and optimized for surface-enhanced coherent anti-Stokes Raman scattering with 780 nm pumping and 500–1800 cm− 1 Raman signature region. The Fano lineshape was engineered to ensure near-field energy coupling at pump while enhancing the coherent anti-Stokes Raman signal at the far field. Our computational studies explored the purely electric origin of Fano resonance in those oligomers and provided maximum Raman enhancements of 1012–1013 from them to enable single-molecular level applications. Our findings provide a way to realize fabrication-friendly nanostructures with higher number of spatially localized hotspots for improving the Raman detection sensitivity.


YSO-asiasanatspektroskopiapintailmiötplasmonitoligomeerinanorakenteetsirontaresonanssi

Vapaat asiasanatFano resonance; plasmonic oligomers; coherent anti-Stokes Raman scattering


Liittyvät organisaatiot

JYU-yksiköt:


OKM-raportointiKyllä

Raportointivuosi2020

JUFO-taso1


Viimeisin päivitys 2024-03-04 klo 21:26