A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Flat-band superconductivity in periodically strained graphene : mean-field and Berezinskii–Kosterlitz–Thouless transition (2020)


Peltonen, T. J., & Heikkilä, T. T. (2020). Flat-band superconductivity in periodically strained graphene : mean-field and Berezinskii–Kosterlitz–Thouless transition. Journal of Physics: Condensed Matter, 32(36), Article 365603. https://doi.org/10.1088/1361-648X/ab8b9d


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatPeltonen, Teemu Juhani; Heikkilä, Tero T.

Lehti tai sarjaJournal of Physics: Condensed Matter

ISSN0953-8984

eISSN1361-648X

Julkaisuvuosi2020

Volyymi32

Lehden numero36

Artikkelinumero365603

KustantajaInstitute of physics

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1088/1361-648X/ab8b9d

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/68731

Julkaisu on rinnakkaistallennettuhttps://arxiv.org/abs/1910.06671


Tiivistelmä

In the search of high-temperature superconductivity one option is to focus on increasing the density of electronic states. Here we study both the normal and s-wave superconducting state properties of periodically strained graphene, which exhibits approximate flat bands with a high density of states, with the flatness tunable by the strain profile. We generalize earlier results regarding a one-dimensional harmonic strain to arbitrary periodic strain fields, and further extend the results by calculating the superfluid weight and the Berezinskii–Kosterlitz–Thouless (BKT) transition temperature T BKT to determine the true transition point. By numerically solving the self-consistency equation, we find a strongly inhomogeneous superconducting order parameter, similarly to twisted bilayer graphene. In the flat-band regime the order parameter magnitude, critical chemical potential, critical temperature, superfluid weight, and BKT transition temperature are all approximately linear in the interaction strength, which suggests that high-temperature superconductivity might be feasible in this system. We especially show that by using realistic strain strengths T BKT can be made much larger than in twisted bilayer graphene, if using similar interaction strengths. We also calculate properties such as the local density of states that could serve as experimental fingerprints for the presented model.


YSO-asiasanatnanorakenteetgrafeenisuprajohtavuus

Vapaat asiasanatBCS theory; flat bands; graphene; strain engineering; superconductivity


Liittyvät organisaatiot

JYU-yksiköt:


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

Raportointivuosi2020

JUFO-taso2


Viimeisin päivitys 2024-03-04 klo 21:26