A4 Artikkeli konferenssijulkaisussa
Numerical study on the limit of quasi-static approximation for plasmonic nanosphere (2020)


Dutta, Arpan; Tiainen, Ville; Toppari, Jussi (2020). Numerical study on the limit of quasi-static approximation for plasmonic nanosphere. In Shekhawat, Manoj Singh; Bhardwaj, Sudhir; Suthar, Bhuvneshwer (Eds.) ICC-2019 : 3rd International Conference on Condensed Matter and Applied Physics, AIP Conference Proceedings, 2220. American Institute of Physics, 050012. DOI: 10.1063/5.0001102


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajat: Dutta, Arpan; Tiainen, Ville; Toppari, Jussi

Emojulkaisu: ICC-2019 : 3rd International Conference on Condensed Matter and Applied Physics

Emojulkaisun toimittajat: Shekhawat, Manoj Singh; Bhardwaj, Sudhir; Suthar, Bhuvneshwer

Konferenssi:

  • International Conference on Condensed Matter and Applied Physics

Konferenssin paikka ja aika: Bikaner, India, 14.-15.10.2019

ISBN: 978-0-7354-1976-6

Lehti tai sarja: AIP Conference Proceedings

ISSN: 0094-243X

eISSN: 1935-0465

Julkaisuvuosi: 2020

Sarjan numero: 2220

Artikkelinumero: 050012

Kustantaja: American Institute of Physics

Julkaisumaa: Yhdysvallat (USA)

Julkaisun kieli: englanti

DOI: https://doi.org/10.1063/5.0001102

Avoin saatavuus: Julkaisukanava ei ole avoin

Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/68861


Tiivistelmä

Plasmonic nanospheres are often employed as resonant substrates in many nanophotonic applications, like in enhanced spectroscopy, near-field microscopy, photovoltaics, and sensing. Accurate calculation and tuning of optical responses of such nanospheres are essential to achieve optimal performance. Mie theory is widely used to calculate optical properties of spherical particles. Although, an approximated version of Mie approach, the quasi-static approximation (QSA) can also be used to determine the very same properties of those spheres with a lot simpler formulations. In this work, we report our numerical study on the limit and accuracy of QSA with respect to the rigorous Mie approach. We calculated scattering, absorption and extinction spectra of silver and gold nanospheres in air with varying sizes using both QSA and Mie theory. Then, we extracted spectral positions of the resonance peaks from their calculated optical responses and defined the error present in QSA as the difference between the spectral positions of the resonance peaks calculated by QSA and Mie method. Our error analysis reveals that QSA approach yields nonlinear increment in error with linear increment in size of the nanosphere and that the amount of error is significantly less in the case of gold spheres compared to the silver ones. We also provide a polynomial-fitted error function that resembles the qualitative trend in error.


YSO-asiasanat: tiiviin aineen fysiikka; plasmonit; nanohiukkaset; optiset ominaisuudet

Vapaat asiasanat: condensed matter physics


Liittyvät organisaatiot

JYU-yksiköt:


OKM-raportointi: Kyllä

Raportointivuosi: 2020

Alustava JUFO-taso: 1


Viimeisin päivitys 2020-18-08 klo 13:36