A1 Journal article (refereed)
Gait Variability Using Waist- and Ankle-Worn Inertial Measurement Units in Healthy Older Adults (2020)

Rantalainen, T., Karavirta, L., Pirkola, H., Rantanen, T., & Linnamo, V. (2020). Gait Variability Using Waist- and Ankle-Worn Inertial Measurement Units in Healthy Older Adults. Sensors, 20(10), Article 2858. https://doi.org/10.1016/j.gaitpost.2020.08.040

JYU authors or editors

Publication details

All authors or editors: Rantalainen, Timo; Karavirta, Laura; Pirkola, Henrikki; Rantanen, Taina; Linnamo, Vesa

Journal or series: Sensors

eISSN: 1424-8220

Publication year: 2020

Volume: 20

Issue number: 10

Article number: 2858

Publisher: MDPI

Publication country: Switzerland

Publication language: English

DOI: https://doi.org/10.1016/j.gaitpost.2020.08.040

Publication open access: Openly available

Publication channel open access: Open Access channel

Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/69121


Gait variability observed in step duration is predictive of impending adverse health outcomes among apparently healthy older adults and could potentially be evaluated using wearable sensors (inertial measurement units, IMU). The purpose of the present study was to establish the reliability and concurrent validity of gait variability and complexity evaluated with a waist and an ankle-worn IMU. Seventeen women (age 74.8 (SD 44) years) and 10 men (73.7 (4.1) years) attended two laboratory measurement sessions a week apart. Their stride duration variability was concurrently evaluated based on a continuous 3 min walk using a force plate and a waist- and an ankle-worn IMU. Their gait complexity (multiscale sample entropy) was evaluated from the waist-worn IMU. The force plate indicated excellent stride duration variability reliability (intra-class correlation coefficient, ICC = 0.90), whereas fair to good reliability (ICC = 0.47 to 0.66) was observed from the IMUs. The IMUs exhibited poor to excellent concurrent validity in stride duration variability compared to the force plate (ICC = 0.22 to 0.93). A good to excellent reliability was observed for gait complexity in most coarseness scales (ICC = 0.60 to 0.82). A reasonable congruence with the force plate-measured stride duration variability was observed on many coarseness scales (correlation coefficient = 0.38 to 0.83). In conclusion, waist-worn IMU entropy estimates may provide a feasible indicator of gait variability among community-dwelling ambulatory older adults.

Keywords: biomechanics; motion analysis; walking (motion); older people

Free keywords: wearable; gait; accelerometer; dynamics; non-linear

Contributing organizations

Related projects

Ministry reporting: Yes

Reporting Year: 2020

JUFO rating: 1

Last updated on 2022-17-06 at 10:22