A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance (2020)
Franks, J., & Vihola, M. (2020). Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance. Stochastic Processes and Their Applications, 130(10), 6157-6183. https://doi.org/10.1016/j.spa.2020.05.006
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Franks, Jordan; Vihola, Matti
Lehti tai sarja: Stochastic Processes and Their Applications
ISSN: 0304-4149
eISSN: 1879-209X
Julkaisuvuosi: 2020
Volyymi: 130
Lehden numero: 10
Artikkelin sivunumerot: 6157-6183
Kustantaja: Elsevier
Julkaisumaa: Alankomaat
Julkaisun kieli: englanti
DOI: https://doi.org/10.1016/j.spa.2020.05.006
Julkaisun avoin saatavuus: Ei avoin
Julkaisukanavan avoin saatavuus:
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/69233
Julkaisu on rinnakkaistallennettu: https://arxiv.org/abs/1706.09873
Tiivistelmä
We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis–Hastings and delayed-acceptance (DA) MCMC. Our ordering implies that IS is guaranteed to be competitive up to a factor depending on the supremum of the (marginal) IS weight. We elaborate upon the criterion in case of unbiased estimators as part of an auxiliary variable framework. We show how the criterion implies asymptotic variance guarantees for IS in terms of pseudo-marginal (PM) and DA corrections, essentially if the ratio of exact and approximate likelihoods is bounded. We also show that convergence of the IS chain can be less affected by unbounded high-variance unbiased estimators than PM and DA chains.
YSO-asiasanat: stokastiset prosessit; Markovin ketjut; Monte Carlo -menetelmät; estimointi; numeeriset menetelmät
Vapaat asiasanat: asymptotic variance; delayed-acceptance; importance sampling; Markov chain Monte Carlo; pseudo-marginal algorithm; unbiased estimator
Liittyvät organisaatiot
Hankkeet, joissa julkaisu on tehty
- Eksakstisti approksimoidut Monte Carlo -menetelmät monimutkaiseen Bayes-päättelyyn
- Vihola, Matti
- Suomen Akatemia
- Eksaktisti approksimoidut Monte Carlo -m
- Vihola, Matti
- Suomen Akatemia
- Eksaktisti approksimoidut Monte Carlo -menetelmät monimutkaiseen Bayes-päättelyyn (tutkimuskulut)
- Vihola, Matti
- Suomen Akatemia
OKM-raportointi: Kyllä
VIRTA-lähetysvuosi: 2020
JUFO-taso: 2