A1 Journal article (refereed)
Multitasking in Driving as Optimal Adaptation Under Uncertainty (2020)


Jokinen, Jussi P. P.; Kujala, Tuomo; Oulasvirta, Antti (2020). Multitasking in Driving as Optimal Adaptation Under Uncertainty. Human Factors, Early online. DOI: 10.1177/0018720820927687


JYU authors or editors


Publication details

All authors or editors: Jokinen, Jussi P. P.; Kujala, Tuomo; Oulasvirta, Antti

Journal or series: Human Factors

ISSN: 0018-7208

eISSN: 1547-8181

Publication year: 2020

Volume: Early online

Publisher: SAGE Publications

Publication country: United States

Publication language: English

DOI: http://doi.org/10.1177/0018720820927687

Open Access: Open access publication published in a hybrid channel

Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/71313


Abstract

Objective. The objective was to better understand how people adapt multitasking behavior when circumstances in driving change and how safe versus unsafe behaviors emerge.
Background. Multitasking strategies in driving adapt to changes in the task environment, but the cognitive mechanisms of this adaptation are not well known. Missing is a unifying account to explain the joint contribution of task constraints, goals, cognitive capabilities, and beliefs about the driving environment.
Method. We model the driver’s decision to deploy visual attention as a stochastic sequential decision-making problem and propose hierarchical reinforcement learning as a computationally tractable solution to it. The supervisory level deploys attention based on per-task value estimates, which incorporate beliefs about risk. Model simulations are compared against human data collected in a driving simulator.
Results. Human data show adaptation to the attentional demands of ongoing tasks, as measured in lane deviation and in-car gaze deployment. The predictions of our model fit the human data on these metrics.
Conclusion. Multitasking strategies can be understood as optimal adaptation under uncertainty, wherein the driver adapts to cognitive constraints and the task environment’s uncertainties, aiming to maximize the expected long-term utility. Safe and unsafe behaviors emerge as the driver has to arbitrate between conflicting goals and manage uncertainty about them.
Application. Simulations can inform studies of conditions that are likely to give rise to unsafe driving behavior.


Keywords: drivers (occupations); perceptions (mental objects); visual environment; cognitive processes; traffic behaviour; driving style

Free keywords: driving; multitasking; task interleaving; computational rationality; reinforcement learning


Contributing organizations


Ministry reporting: No, publication in press


Last updated on 2020-03-08 at 10:35