A1 Journal article (refereed)
Short time existence of the classical solution to the fractional mean curvature flow (2020)


Julin, V., & La Manna, D. A. (2020). Short time existence of the classical solution to the fractional mean curvature flow. Annales de l’Institut Henri Poincaré : Analyse Non Linéaire, 37(4), 983-1016. https://doi.org/10.1016/j.anihpc.2020.02.007


JYU authors or editors


Publication details

All authors or editors: Julin, Vesa; La Manna, Domenico Angelo

Journal or series: Annales de l’Institut Henri Poincaré : Analyse Non Linéaire

ISSN: 0294-1449

eISSN: 1873-1430

Publication year: 2020

Volume: 37

Issue number: 4

Pages range: 983-1016

Publisher: Elsevier

Publication country: France

Publication language: English

DOI: https://doi.org/10.1016/j.anihpc.2020.02.007

Publication open access: Not open

Publication channel open access:

Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/71497

Publication is parallel published: https://arxiv.org/abs/1906.10990


Abstract

We establish short-time existence of the smooth solution to the fractional mean curvature flow when the initial set is bounded and C1,1-regular. We provide the same result also for the volume preserving fractional mean curvature flow.


Keywords: differential geometry; partial differential equations

Free keywords: fractional mean curvature flow; short time existence; classical solution; fractional perimeter


Contributing organizations


Related projects


Ministry reporting: Yes

Reporting Year: 2020

JUFO rating: 3


Last updated on 2023-03-10 at 14:25