A1 Journal article (refereed)
Deep Underground Neutrino Experiment (DUNE) : Far detector technical design report. Volume IV. The DUNE far detector single-phase technology (2020)


DUNE Collaboration (2020). Deep Underground Neutrino Experiment (DUNE) : Far detector technical design report. Volume IV. The DUNE far detector single-phase technology. Journal of Instrumentation, 15 (8), T08010. DOI: 10.1088/1748-0221/15/08/T08010


JYU authors or editors


Publication details

All authors or editors: DUNE Collaboration

Journal or series: Journal of Instrumentation

eISSN: 1748-0221

Publication year: 2020

Volume: 15

Issue number: 8

Article number: T08010

Publisher: IOP Publishing

Publication country: United Kingdom

Publication language: English

DOI: http://doi.org/10.1088/1748-0221/15/08/T08010

Open Access: Open access publication published in a hybrid channel

Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/71757

Publication is parallel published: https://arxiv.org/abs/2002.03010


Abstract

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE's physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNE.


Keywords: supernovae; protons; particle physics; astrophysics


Contributing organizations


Ministry reporting: Yes

Preliminary JUFO rating: 1


Last updated on 2020-14-09 at 16:09