A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Hypersensitive Tunable Josephson Escape Sensor for Gigahertz Astronomy (2020)


Paolucci, F., Ligato, N., Buccheri, V., Germanese, G., Virtanen, P., & Giazotto, F. (2020). Hypersensitive Tunable Josephson Escape Sensor for Gigahertz Astronomy. Physical Review Applied, 14(3), Article 034055. https://doi.org/10.1103/PhysRevApplied.14.034055


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatPaolucci, Federico; Ligato, Nadia; Buccheri, Vittorio; Germanese, Gaia; Virtanen, Pauli; Giazotto, Francesco

Lehti tai sarjaPhysical Review Applied

ISSN2331-7019

eISSN2331-7019

Julkaisuvuosi2020

Volyymi14

Lehden numero3

Artikkelinumero034055

KustantajaAmerican Physical Society

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1103/PhysRevApplied.14.034055

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/72599

Julkaisu on rinnakkaistallennettuhttps://arxiv.org/abs/2003.05966


Tiivistelmä

Single-photon detectors and bolometers represent the bridge between different topics in science, such as quantum computation, astronomy, particle physics, and biology. Nowadays, superconducting bolometers and calorimeters are the most-sensitive detectors in the terahertz and subterahertz bands. Here, we propose and demonstrate a Josephson escape sensor (JES) that could find natural application in astrophysics. The JES is composed of a fully superconducting one-dimensional Josephson junction, whose resistance-versus-temperature characteristics can be precisely controlled by a bias current. Therefore, differently from traditional superconducting detectors, the JES sensitivity and working temperature can be in situ simply and finely tuned depending on the application requirements. A JES bolometer is expected to show an intrinsic thermal-fluctuation-noise noise-equivalent power on the order of
10−25 W/Hz1/2, while a JES calorimeter could provide a frequency resolution of about 2 GHz, as deduced from the experimental data. In addition, the sensor can operate at the critical temperature (i.e., working as a conventional transition-edge sensor), with a noise-equivalent power of approximately 6×10−20 W/Hz1/2 and a frequency resolution of approximately 100 GHz.


YSO-asiasanatastrofysiikkatutkimuslaitteetilmaisimetsuprajohteet


Liittyvät organisaatiot

JYU-yksiköt:


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

Raportointivuosi2020

JUFO-taso2


Viimeisin päivitys 2024-03-04 klo 20:55