A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
An Updated Guideline for Assessing Discriminant Validity (2022)


Rönkkö, M., & Cho, E. (2022). An Updated Guideline for Assessing Discriminant Validity. Organizational Research Methods, 25(1), 6-14. https://doi.org/10.1177/1094428120968614


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatRönkkö, Mikko; Cho, Eunseong

Lehti tai sarjaOrganizational Research Methods

ISSN1094-4281

eISSN1552-7425

Julkaisuvuosi2022

Ilmestymispäivä23.11.2020

Volyymi25

Lehden numero1

Artikkelin sivunumerot6-14

KustantajaSAGE Publications

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1177/1094428120968614

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusOsittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/73510


Tiivistelmä

Discriminant validity was originally presented as a set of empirical criteria that can be assessed from multitrait-multimethod (MTMM) matrices. Because datasets used by applied researchers rarely lend themselves to MTMM analysis, the need to assess discriminant validity in empirical research has led to the introduction of numerous techniques, some of which have been introduced in an ad hoc manner and without rigorous methodological support. We review various definitions of and techniques for assessing discriminant validity and provide a generalized definition of discriminant validity based on the correlation between two measures after measurement error has been considered. We then review techniques that have been proposed for discriminant validity assessment, demonstrating some problems and equivalencies of these techniques that have gone unnoticed by prior research. After conducting Monte Carlo simulations that compare the techniques, we present techniques called CICFA(sys) and χ2(sys) that applied researchers can use to assess discriminant validity.


YSO-asiasanatorganisaatiotutkimuskvantitatiivinen tutkimusmittaustilastomenetelmätfaktorianalyysivalidointiMonte Carlo -menetelmät

Vapaat asiasanatdiscriminant validity; Monte Carlo simulation; measurement; confirmatory factor analysis; validation; average variance extracted; heterotrait-monotrait ratio; cross-loadings


Liittyvät organisaatiot

JYU-yksiköt:


Hankkeet, joissa julkaisu on tehty


OKM-raportointiKyllä

Raportointivuosi2023

JUFO-taso3


Viimeisin päivitys 2024-15-06 klo 00:46