A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Consistency of Independent Component Analysis for FMRI (2021)


Zhao, W., Li, H., Hu, G., Hao, Y., Zhang, Q., Wu, J., Frederick, B. B., & Cong, F. (2021). Consistency of Independent Component Analysis for FMRI. Journal of Neuroscience Methods, 351, Article 109013. https://doi.org/10.1016/j.jneumeth.2020.109013


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatZhao, Wei; Li, Huanjie; Hu, Guoqiang; Hao, Yuxing; Zhang, Qing; Wu, Jianlin; Frederick, Blaise B.; Cong, Fengyu

Lehti tai sarjaJournal of Neuroscience Methods

ISSN0165-0270

eISSN1872-678X

Julkaisuvuosi2021

Volyymi351

Artikkelinumero109013

KustantajaElsevier BV

JulkaisumaaAlankomaat

Julkaisun kielienglanti

DOIhttps://doi.org/10.1016/j.jneumeth.2020.109013

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/73899


Tiivistelmä

Background
Independent component analysis (ICA) has been widely used for blind source separation in the field of medical imaging. However, despite of previous substantial efforts, the stability of ICA components remains a critical issue which has not been adequately addressed, despite numerous previous efforts. Most critical is the inconsistency of some of the extracted components when ICA is run with different model orders (MOs).
New Method
In this study, a novel method of determining the consistency of component analysis (CoCA) is proposed to evaluate the consistency of extracted components with different model orders. In the method, “consistent components” (CCs) are defined as those which can be extracted repeatably over a range of model orders.
Result
The efficacy of the method was evaluated with simulation data and fMRI datasets. With our method, the simulation result showed a clear difference of consistency between ground truths and noise.
Comparison with existing methods
The information criteria were implemented to provide suggestions for the optimal model order, where some of the ICs were revealed inconsistent in our proposed method.
Conclusions
This method provided an objective protocol for choosing CCs of an ICA decomposition of a data matrix, independent of model order. This is especially useful with high model orders, where noise or other disturbances could possibly lead to an instability of the components.


YSO-asiasanattoiminnallinen magneettikuvaussignaalianalyysisignaalinkäsittely

Vapaat asiasanatconsistency; model order; ICA; fMRI


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2021

JUFO-taso1


Viimeisin päivitys 2024-12-10 klo 08:45