A1 Journal article (refereed)
Surrogate assisted interactive multiobjective optimization in energy system design of buildings (2021)


Aghaei Pour, P., Rodemann, T., Hakanen, J., & Miettinen, K. (2021). Surrogate assisted interactive multiobjective optimization in energy system design of buildings. Optimization and Engineering, Early online. https://doi.org/10.1007/s11081-020-09587-8


JYU authors or editors


Publication details

All authors or editors: Aghaei Pour, Pouya; Rodemann, Tobias; Hakanen, Jussi; Miettinen, Kaisa

Journal or series: Optimization and Engineering

ISSN: 1389-4420

eISSN: 1573-2924

Publication year: 2021

Volume: Early online

Publisher: Springer

Publication country: Netherlands

Publication language: English

DOI: https://doi.org/10.1007/s11081-020-09587-8

Publication open access: Openly available

Publication channel open access: Partially open access channel

Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/73621


Abstract

In this paper, we develop a novel evolutionary interactive method called interactive K-RVEA, which is suitable for computationally expensive problems. We use surrogate models to replace the original expensive objective functions to reduce the computation time. Typically, in interactive methods, a decision maker provides some preferences iteratively and the optimization algorithm narrows the search according to those preferences. However, working with surrogate model swill introduce some inaccuracy to the preferences, and therefore, it would be desirable that the decision maker can work with the solutions that are evaluated with the original objective functions. Therefore, we propose a novel model management strategy to incorporate the decision maker’s preferences to select some of the solutions for both updating the surrogate models (to improve their accuracy) and to show them to the decision maker. Moreover, we solve a simulation-based computationally expensive optimization problem by finding an optimal configuration for an energy system of a heterogeneous business building complex. We demonstrate how a decision maker can interact with the method and how the most preferred solution is chosen.Finally, we compare our method with another interactive method, which does not have any model management strategy, and shows how our model management strategy can help the algorithm to follow the decision maker’s preferences.


Keywords: multi-objective optimisation; decision support systems; construction design; HPAC planning; energy systems

Free keywords: model management; evolutionary interactive methods; surrogate-assisted optimization; multiobjective optimization; computationally expensive problems


Contributing organizations


Related projects


Ministry reporting: No, publication in press

Preliminary JUFO rating: 1


Last updated on 2021-17-09 at 16:52