A1 Journal article (refereed)
Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression (2021)


Zhu, Y., Wang, X., Mathiak, K., Toiviainen, P., Ristaniemi, T., Xu, J., Chang, Y., & Cong, F. (2021). Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression. International Journal of Neural Systems, 31(3), Article 2150001. https://doi.org/10.1142/S0129065721500015


JYU authors or editors


Publication details

All authors or editorsZhu, Yongjie; Wang, Xiaoyu; Mathiak, Klaus; Toiviainen, Petri; Ristaniemi, Tapani; Xu, Jing; Chang, Yi; Cong, Fengyu

Journal or seriesInternational Journal of Neural Systems

ISSN0129-0657

eISSN1793-6462

Publication year2021

Volume31

Issue number3

Article number2150001

PublisherWorld Scientific

Publication countrySingapore

Publication languageEnglish

DOIhttps://doi.org/10.1142/S0129065721500015

Publication open accessNot open

Publication channel open access

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/73577


Abstract

To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive disorder (MDD). The music-induced oscillatory brain patterns were determined by permutation correlation analysis between individual time courses of Fourier-ICA components and musical features. We found that (1) three components, including a beta sensorimotor network, a beta auditory network and an alpha medial visual network, were involved in music processing among most healthy subjects; and that (2) one alpha lateral component located in the left angular gyrus was engaged in music perception in most individuals with MDD. The proposed method allowed the statistical group comparison, and we found that: (1) the alpha lateral component was activated more strongly in healthy subjects than in the MDD individuals, and that (2) the derived frequency-dependent networks of musical feature processing seemed to be altered in MDD participants compared to healthy subjects. The proposed pipeline appears to be valuable for studying disrupted brain oscillations in psychiatric disorders during naturalistic paradigms.


Keywordsdepression (mental disorders)musicmusic psychologyneural networks (biology)EEGsignal analysissignal processing

Free keywordsmajor depressive disorder; naturalistic music listening; ongoing EEG; independent component analysis; brain networks; neural oscillations


Contributing organizations


Ministry reportingYes

Reporting Year2021

JUFO rating1


Last updated on 2024-03-04 at 20:26