A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Biotemplated Lithography of Inorganic Nanostructures (BLIN) for Versatile Patterning of Functional Materials (2021)


Piskunen, P., Shen, B., Keller, A., Toppari, J. J., Kostiainen, M. A., & Linko, V. (2021). Biotemplated Lithography of Inorganic Nanostructures (BLIN) for Versatile Patterning of Functional Materials. ACS Applied Nano Materials, 4(1), 529-538. https://doi.org/10.1021/acsanm.0c02849


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatPiskunen, Petteri; Shen, Boxuan; Keller, Adrian; Toppari, J. Jussi; Kostiainen, Mauri A.; Linko, Veikko

Lehti tai sarjaACS Applied Nano Materials

ISSN2574-0970

eISSN2574-0970

Julkaisuvuosi2021

Ilmestymispäivä30.12.2020

Volyymi4

Lehden numero1

Artikkelin sivunumerot529-538

KustantajaAmerican Chemical Society (ACS)

JulkaisumaaYhdysvallat (USA)

Julkaisun kielienglanti

DOIhttps://doi.org/10.1021/acsanm.0c02849

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus


Tiivistelmä

Here, we present a highly parallel fabrication method dubbed biotemplated lithography of inorganic nanostructures (BLIN) that enables large-scale versatile substrate patterning of metallic and semiconducting nanoshapes with various aspect ratios. We demonstrate the feasibility of our method by employing custom DNA origami structures and Tobacco mosaic virus (TMV) as biotemplates for pattern mask formation. Subsequently, we show high-throughput fabrication of plasmonic (Au and Ag), semiconducting (Ge), and metallic (Al and Ti) nanoparticles on substrates such as indium tin oxide coated glass and silicon wafers. The patterning ability of BLIN ranges from ∼10 to 20 nm feature sizes (with DNA origami, dimensions ∼100 nm or less) to micrometer-long nanowires (with TMV). This combination of scales and material freedom could, with further improvements, provide a cost-efficient pathway for the mass production of versatile nanopatterned surfaces with even smaller feature sizes. BLIN presents a major advantage compared to similar, previously reported techniques, as it permits the use of inexpensive and highly convenient substrates such as optical glass while simultaneously imposing minimal material restrictions on the fabricated nanostructures. Therefore, we believe our method can serve as a viable and potent alternative to current state-of-the-art approaches to produce optically active substrates with various applications in plasmonics (resonances at the visible wavelength range), biosensing (surface enhanced Raman spectroscopy), and functional metamaterials.


YSO-asiasanatnanorakenteetoptinen litografia (mikrovalmistus)DNAvirukset

Vapaat asiasanatDNA nanotechnology; DNA origami; virus, nanostructures; nanofabrication; lithography; optics


Liittyvät organisaatiot

JYU-yksiköt:


OKM-raportointiKyllä

Raportointivuosi2021

JUFO-taso1


Viimeisin päivitys 2024-03-04 klo 19:57