A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Designed synthesis of perylene diimide-based supramolecular heterojunction with g-C3N4@MIL-125(Ti) : insight into photocatalytic performance and mechanism (2021)


Fakhri, H., Farzadkia, M., Srivastava, V., & Sillanpää, M. (2021). Designed synthesis of perylene diimide-based supramolecular heterojunction with g-C3N4@MIL-125(Ti) : insight into photocatalytic performance and mechanism. Journal of Materials Science: Materials in Electronics, 32(1), 19-32. https://doi.org/10.1007/s10854-020-04311-9


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatFakhri, Hanieh; Farzadkia, Mahdi; Srivastava, Varsha; Sillanpää, Mika

Lehti tai sarjaJournal of Materials Science: Materials in Electronics

ISSN0957-4522

eISSN1573-482X

Julkaisuvuosi2021

Ilmestymispäivä04.01.2021

Volyymi32

Lehden numero1

Artikkelin sivunumerot19-32

KustantajaSpringer

JulkaisumaaBritannia

Julkaisun kielienglanti

DOIhttps://doi.org/10.1007/s10854-020-04311-9

Julkaisun avoin saatavuusEi avoin

Julkaisukanavan avoin saatavuus


Tiivistelmä

A new supramolecular semiconductor perylene diimide (PDI)-functionalized g-C3N4@MIL-125(Ti) (is nominated as PC@MIL-125(Ti)) was prepared through in situ growth of MIL-125(Ti) on PDI-functionalized g-C3N4 (PC) sheets. This heterojunction was used for photodegradation of methyl orange (MO) pollutants under visible light illumination. This process was sensitive to the pH of solution, dosage of PC and the presence of the various scavengers. The 30PC@MIL-125(Ti) as optimum photocatalyst indicated synergistic effects on photodegradation of MO, where the maximum photocatalytic efficiency was obtained 100% under 90 min irradiation that was higher than pure PC and MIL-125(Ti). Herein, the PDI component acts as a powerful light harvester and improves absorption of visible light where PC@MIL-125(Ti) has a lower bandgap than g-C3N4@MIL-125(Ti). Moreover, proper contact between PDI and g-C3N4 sheets constructs the highway for easy and fast electron transfer that verified by photoluminescence analysis. The sum of these factors resulted in the superior photocatalytic ability of this heterojunction, where the TOC analysis confirmed 91% mineralization for MO. Besides, according to the results of LC-MASS analysis, the azo cleavage and dealkylation were main photodegradation pathways. By considering superior photocatalytic performance of this heterojunction, this work can be a guideline for the development of PDI-based supramolecular organic–inorganic photocatalyst.


YSO-asiasanatkompleksiyhdisteetorganometalliyhdisteetsupramolekulaarinen kemiakatalyytitvalokemiafotokatalyysiympäristökemiajäteveden käsittelyhaitalliset aineet


Liittyvät organisaatiot

JYU-yksiköt:


OKM-raportointiKyllä

Raportointivuosi2021

JUFO-taso1


Viimeisin päivitys 2024-03-04 klo 20:06