A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Designed synthesis of perylene diimide-based supramolecular heterojunction with g-C3N4@MIL-125(Ti) : insight into photocatalytic performance and mechanism (2021)


Fakhri, H., Farzadkia, M., Srivastava, V., & Sillanpää, M. (2021). Designed synthesis of perylene diimide-based supramolecular heterojunction with g-C3N4@MIL-125(Ti) : insight into photocatalytic performance and mechanism. Journal of Materials Science: Materials in Electronics, 32(1), 19-32. https://doi.org/10.1007/s10854-020-04311-9


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajat: Fakhri, Hanieh; Farzadkia, Mahdi; Srivastava, Varsha; Sillanpää, Mika

Lehti tai sarja: Journal of Materials Science: Materials in Electronics

ISSN: 0957-4522

eISSN: 1573-482X

Julkaisuvuosi: 2021

Volyymi: 32

Lehden numero: 1

Artikkelin sivunumerot: 19-32

Kustantaja: Springer

Julkaisumaa: Britannia

Julkaisun kieli: englanti

DOI: https://doi.org/10.1007/s10854-020-04311-9

Julkaisun avoin saatavuus: Ei avoin

Julkaisukanavan avoin saatavuus:


Tiivistelmä

A new supramolecular semiconductor perylene diimide (PDI)-functionalized g-C3N4@MIL-125(Ti) (is nominated as PC@MIL-125(Ti)) was prepared through in situ growth of MIL-125(Ti) on PDI-functionalized g-C3N4 (PC) sheets. This heterojunction was used for photodegradation of methyl orange (MO) pollutants under visible light illumination. This process was sensitive to the pH of solution, dosage of PC and the presence of the various scavengers. The 30PC@MIL-125(Ti) as optimum photocatalyst indicated synergistic effects on photodegradation of MO, where the maximum photocatalytic efficiency was obtained 100% under 90 min irradiation that was higher than pure PC and MIL-125(Ti). Herein, the PDI component acts as a powerful light harvester and improves absorption of visible light where PC@MIL-125(Ti) has a lower bandgap than g-C3N4@MIL-125(Ti). Moreover, proper contact between PDI and g-C3N4 sheets constructs the highway for easy and fast electron transfer that verified by photoluminescence analysis. The sum of these factors resulted in the superior photocatalytic ability of this heterojunction, where the TOC analysis confirmed 91% mineralization for MO. Besides, according to the results of LC-MASS analysis, the azo cleavage and dealkylation were main photodegradation pathways. By considering superior photocatalytic performance of this heterojunction, this work can be a guideline for the development of PDI-based supramolecular organic–inorganic photocatalyst.


YSO-asiasanat: kompleksiyhdisteet; organometalliyhdisteet; supramolekulaarinen kemia; katalyytit; valokemia; fotokatalyysi; ympäristökemia; jäteveden käsittely; haitalliset aineet


Liittyvät organisaatiot

JYU-yksiköt:


OKM-raportointi: Kyllä

Raportointivuosi: 2021

Alustava JUFO-taso: 1


Viimeisin päivitys 2021-07-07 klo 17:56