A1 Journal article (refereed)
An evolutionary Haar-Rado type theorem (2022)
Rainer, R., Siltakoski, J., & Stanin, T. (2022). An evolutionary Haar-Rado type theorem. Manuscripta Mathematica, 168(1-2), 65-88. https://doi.org/10.1007/s00229-021-01293-8
JYU authors or editors
Publication details
All authors or editors: Rainer, Rudolf; Siltakoski, Jarkko; Stanin, Thomas
Journal or series: Manuscripta Mathematica
ISSN: 0025-2611
eISSN: 1432-1785
Publication year: 2022
Publication date: 03/04/2021
Volume: 168
Issue number: 1-2
Pages range: 65-88
Publisher: Springer
Publication country: Germany
Publication language: English
DOI: https://doi.org/10.1007/s00229-021-01293-8
Publication open access: Openly available
Publication channel open access: Partially open access channel
Publication is parallel published (JYX): https://jyx.jyu.fi/handle/123456789/75004
Abstract
In this paper, we study variational solutions to parabolic equations of the type ∂t u −divx (Dξ f (Du))+ Du g(x, u) = 0, where u attains time-independent boundary values u0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values u0 admit a modulus of continuity ω and the estimate |u(x, t)−u0(γ )| ≤ ω(|x −γ |) holds, then u admits the same modulus of continuity in the spatial variable.
Keywords: partial differential equations; calculus of variations
Contributing organizations
Ministry reporting: Yes
Reporting Year: 2022
Preliminary JUFO rating: 1