A1 Journal article (refereed)
Euclid preparation : XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography (2021)


Euclid Collaboration. (2021). Euclid preparation : XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography. Astronomy and Astrophysics, 647, Article A117. https://doi.org/10.1051/0004-6361/202040237


JYU authors or editors


Publication details

All authors or editorsEuclid Collaboration

Journal or seriesAstronomy and Astrophysics

ISSN0004-6361

eISSN1432-0746

Publication year2021

Volume647

Article numberA117

PublisherEDP Sciences

Publication countryFrance

Publication languageEnglish

DOIhttps://doi.org/10.1051/0004-6361/202040237

Publication open accessOpenly available

Publication channel open accessPartially open access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/75097

Publication is parallel publishedhttps://arxiv.org/abs/2101.02228


Abstract

The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift ⟨z⟩. We investigate the possibility of measuring ⟨z⟩ with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2 < z < 2.2, the requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation in order to understand the advantages and complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of ⟨z⟩ with a dedicated spectroscopic sample and the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an extremely high level of > 99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).


Keywordscosmologydark energygalaxiesgalaxy clusters

Free keywordsdark energy; galaxies: distances and redshifts; methods: statistical


Contributing organizations


Ministry reportingYes

Reporting Year2021

JUFO rating2


Last updated on 2024-03-04 at 20:16