A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Hyperspectral Imaging Reveals Spectral Differences and Can Distinguish Malignant Melanoma from Pigmented Basal Cell Carcinomas : A Pilot Study (2021)


Räsänen, J., Salmivuori, M., Pölönen, I., Grönroos, M., & Neittaanmäki, N. (2021). Hyperspectral Imaging Reveals Spectral Differences and Can Distinguish Malignant Melanoma from Pigmented Basal Cell Carcinomas : A Pilot Study. Acta Dermato-Venereologica, 101(2), Article adv00405. https://doi.org/10.2340/00015555-3755


JYU-tekijät tai -toimittajat


Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajatRäsänen, Janne; Salmivuori, Mari; Pölönen, Ilkka; Grönroos, Mari; Neittaanmäki, Noora

Lehti tai sarjaActa Dermato-Venereologica

ISSN0001-5555

eISSN1651-2057

Julkaisuvuosi2021

Volyymi101

Lehden numero2

Artikkelinumeroadv00405

KustantajaSociety for Publication of Acta Dermato-Venereologica

JulkaisumaaRuotsi

Julkaisun kielienglanti

DOIhttps://doi.org/10.2340/00015555-3755

Julkaisun avoin saatavuusAvoimesti saatavilla

Julkaisukanavan avoin saatavuusKokonaan avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX)https://jyx.jyu.fi/handle/123456789/75240


Tiivistelmä

Pigmented basal cell carcinomas can be difficult to distinguish from melanocytic tumours. Hyperspectral imaging is a non-invasive imaging technique that measures the reflectance spectra of skin in vivo. The aim of this prospective pilot study was to use a convolutional neural network classifier in hyperspectral images for differential diagnosis between pigmented basal cell carcinomas and melanoma. A total of 26 pigmented lesions (10 pigmented basal cell carcinomas, 12 melanomas in situ, 4 invasive melanomas) were imaged with hyperspectral imaging and excised for histopathological diagnosis. For 2-class classifier (melanocytic tumours vs pigmented basal cell carcinomas) using the majority of the pixels to predict the class of the whole lesion, the results showed a sensitivity of 100% (95% confidence interval 81–100%), specificity of 90% (95% confidence interval 60–98%) and positive predictive value of 94% (95% confidence interval 73–99%). These results indicate that a convolutional neural network classifier can differentiate melanocytic tumours from pigmented basal cell carcinomas in hyperspectral images. Further studies are warranted in order to confirm these preliminary results, using larger samples and multiple tumour types, including all types of melanocytic lesions.


YSO-asiasanatihosyöpätyvisolusyöpädiagnostiikkaspektrikuvauskoneoppiminenneuroverkot

Vapaat asiasanatdeep learning; neural network; basal cell carcinoma; malignant melanoma


Liittyvät organisaatiot


OKM-raportointiKyllä

VIRTA-lähetysvuosi2021

JUFO-taso2


Viimeisin päivitys 2024-12-10 klo 09:30