A4 Artikkeli konferenssijulkaisussa
Systematisation of Systems Solving Physics Boundary Value Problems (2021)
Rossi, T., Räbinä, J., Mönkölä, S., Kiiskinen, S., Lohi, J., & Kettunen, L. (2021). Systematisation of Systems Solving Physics Boundary Value Problems. In F. J. Vermolen, & C. Vuik (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019 : European Conference, Egmond aan Zee, The Netherlands, September 30 - October 4 (pp. 35-51). Springer. Lecture Notes in Computational Science and Engineering, 139. https://doi.org/10.1007/978-3-030-55874-1_3
JYU-tekijät tai -toimittajat
Julkaisun tiedot
Julkaisun kaikki tekijät tai toimittajat: Rossi, Tuomo; Räbinä, Jukka; Mönkölä, Sanna; Kiiskinen, Sampsa; Lohi, Jonni; Kettunen, Lauri
Emojulkaisu: Numerical Mathematics and Advanced Applications ENUMATH 2019 : European Conference, Egmond aan Zee, The Netherlands, September 30 - October 4
Emojulkaisun toimittajat: Vermolen, Fred J.; Vuik, Cornelis
Konferenssin paikka ja aika: Egmond aan Zee, The Netherlands, 30.9.-4.10.2019
ISBN: 978-3-030-55873-4
eISBN: 978-3-030-55874-1
Lehti tai sarja: Lecture Notes in Computational Science and Engineering
ISSN: 1439-7358
eISSN: 2197-7100
Julkaisuvuosi: 2021
Ilmestymispäivä: 22.08.2020
Sarjan numero: 139
Artikkelin sivunumerot: 35-51
Kirjan kokonaissivumäärä: 1252
Kustantaja: Springer
Kustannuspaikka: Cham
Julkaisumaa: Sveitsi
Julkaisun kieli: englanti
DOI: https://doi.org/10.1007/978-3-030-55874-1_3
Julkaisun avoin saatavuus: Ei avoin
Julkaisukanavan avoin saatavuus: Julkaisukanava ei ole avoin
Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/78432
Tiivistelmä
A general conservation law that defines a class of physical field theories is constructed. First, the notion of a general field is introduced as a formal sum of differential forms on a Minkowski manifold. By the action principle the conservation law is defined for such a general field. By construction, particular field notions of physics, e.g., magnetic flux, electric field strength, stress, strain etc. become instances of the general field. Hence, the differential equations that constitute physical field theories become also instances of the general conservation law. The general field and the general conservation law together correspond to a large class of relativistic hyperbolic physical field models. The parabolic and elliptic models can thereafter be derived by adding constraints. The approach creates solid foundations for developing software systems for scientific computing; the unifying structure shared by the class of field models makes it possible to implement software systems which are not restricted to certain predefined problems. The versatility of the proposed approach is demonstrated by numerical experiments with moving and deforming domains.
YSO-asiasanat: laskennallinen tiede; fysiikka; differentiaaliyhtälöt; numeeriset menetelmät
Vapaat asiasanat: numerical mathematics
Liittyvät organisaatiot
OKM-raportointi: Kyllä
Raportointivuosi: 2021
JUFO-taso: 1