A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Can visualization alleviate dichotomous thinking : Effects of visual representations on the cliff effect (2021)

Helske, J., Helske, S., Cooper, M., Ynnerman, A., & Besancon, L. (2021). Can visualization alleviate dichotomous thinking : Effects of visual representations on the cliff effect. IEEE Transactions on Visualization and Computer Graphics, 27(8), 3397-3409. https://doi.org/10.1109/TVCG.2021.3073466

JYU-tekijät tai -toimittajat

Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajat: Helske, Jouni; Helske, Satu; Cooper, Matthew; Ynnerman, Anders; Besancon, Lonni

Lehti tai sarja: IEEE Transactions on Visualization and Computer Graphics

ISSN: 1077-2626

eISSN: 2160-9306

Julkaisuvuosi: 2021

Volyymi: 27

Lehden numero: 8

Artikkelin sivunumerot: 3397-3409

Kustantaja: IEEE

Julkaisumaa: Yhdysvallat (USA)

Julkaisun kieli: englanti

DOI: https://doi.org/10.1109/TVCG.2021.3073466

Linkki tutkimusaineistoon: https://github.com/helske/statvis

Julkaisun avoin saatavuus: Avoimesti saatavilla

Julkaisukanavan avoin saatavuus: Osittain avoin julkaisukanava

Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/75850

Julkaisu on rinnakkaistallennettu:


Common reporting styles for statistical results in scientific articles, such as \pvalues\ and confidence intervals (CI), have been reported to be prone to dichotomous interpretations, especially with respect to the null hypothesis significance testing framework. For example when the p-value is small enough or the CIs of the mean effects of a studied drug and a placebo are not overlapping, scientists tend to claim significant differences while often disregarding the magnitudes and absolute differences in the effect sizes. This type of reasoning has been shown to be potentially harmful to science. Techniques relying on the visual estimation of the strength of evidence have been recommended to reduce such dichotomous interpretations but their effectiveness has also been challenged. We ran two experiments on researchers with expertise in statistical analysis to compare several alternative representations of confidence intervals and used Bayesian multilevel models to estimate the effects of the representation styles on differences in researchers' subjective confidence in the results. We also asked the respondents' opinions and preferences in representation styles. Our results suggest that adding visual information to classic CI representation can decrease the tendency towards dichotomous interpretations measured as the cliff effect: the sudden drop in confidence around p-value 0.05 compared with classic CI visualization and textual representation of the CI with p-values. All data and analyses are publicly available at https://github.com/helske/statvis.

YSO-asiasanat: tilastomenetelmät; bayesilainen menetelmä; päättely; luottamustasot; tilastografiikka; visualisointi; tulkinta

Vapaat asiasanat: statistical inference; visualization; cliff effect; confidence intervals; hypothesis testing; Bayesian inference

Liittyvät organisaatiot

Hankkeet, joissa julkaisu on tehty

OKM-raportointi: Kyllä

Raportointivuosi: 2021

JUFO-taso: 3

Viimeisin päivitys 2022-20-09 klo 15:58