A1 Journal article (refereed)
Decreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformation (2021)


Maula, T., Vahvelainen, N., Tossavainen, H., Koivunen, T., Pöllänen, M. T., Johansson, A., Permi, P., & Ihalin, R. (2021). Decreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformation. Virulence, 12(1), 1239-1257. https://doi.org/10.1080/21505594.2021.1918497


JYU authors or editors


Publication details

All authors or editorsMaula, Terhi; Vahvelainen, Nelli; Tossavainen, Helena; Koivunen, Tuuli; Pöllänen, Marja T.; Johansson, Anders; Permi, Perttu; Ihalin, Riikka

Journal or seriesVirulence

ISSN2150-5594

eISSN2150-5608

Publication year2021

Publication date01/01/2021

Volume12

Issue number1

Pages range1239-1257

PublisherLandes Bioscience; American Society for Virology

Publication countryUnited States

Publication languageEnglish

DOIhttps://doi.org/10.1080/21505594.2021.1918497

Publication open accessOpenly available

Publication channel open accessOpen Access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/75836


Abstract

Late embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen Aggregatibacter actinomycetemcomitans indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive nuclearcgq magnetic resonance (NMR) studies confirmed its IDP nature, and expression studies in A. actinomycetemcomitans harboring a red fluorescence reporter protein-encoding gene revealed that bilRI promoter expression was increased at decreased temperatures. The amino acid backbone of BilRI did not stimulate either the production of reactive oxygen species from human leukocytes or the production of interleukin-6 from human macrophages. Moreover, BilRI-specific IgG antibodies could not be detected in the sera of A. actinomycetemcomitans culture-positive periodontitis patients. Since the bilRI gene is located near genes involved in natural competence (i.e., genes associated with the uptake of extracellular (eDNA) and its incorporation into the genome), we also investigated the role of BilRI in these events. Compared to wild-type cells, the ΔbilRI mutants showed a lower transformation efficiency, which indicates either a direct or indirect role in natural competence. In conclusion, A. actinomycetemcomitans might express BilRI, especially outside the host, to survive under stressful conditions and improve its transmission potential.


Keywordsproteinsbacteriatemperaturecold resistanceNMR spectroscopy

Free keywordscold shock protein; late embryogenesis; abundant protein; Aggregatibacter actinomycetemcomitans; DNA transformation competence; NMR spectroscopy


Contributing organizations


Related projects


Ministry reportingYes

Reporting Year2021

JUFO rating1


Last updated on 2024-03-04 at 20:16