A1 Journal article (refereed)
Multiple‐batch spawning as a bet‐hedging strategy in highly stochastic environments : an exploratory analysis of Atlantic cod (2021)

Hočevar, S., Hutchings, J. A., & Kuparinen, A. (2021). Multiple‐batch spawning as a bet‐hedging strategy in highly stochastic environments : an exploratory analysis of Atlantic cod. Evolutionary Applications, Early online. https://doi.org/10.1111/eva.13251

JYU authors or editors

Publication details

All authors or editors: Hočevar, Sara; Hutchings, Jeffrey A.; Kuparinen, Anna

Journal or series: Evolutionary Applications

ISSN: 1752-4571

eISSN: 1752-4571

Publication year: 2021

Volume: Early online

Publisher: Wiley-Blackwell

Publication country: United States

Publication language: English

DOI: https://doi.org/10.1111/eva.13251

Publication open access: Openly available

Publication channel open access: Open Access channel


Stochastic environments shape life‐history traits and can promote selection for risk‐spreading strategies, such as bet‐hedging. Although the strategy has often been hypothesised to exist for various species, empirical tests providing firm evidence have been rare, mainly due to the challenge in tracking fitness across generations. Here, we take a ‘proof of principle’ approach to explore whether the reproductive strategy of multiple‐batch spawning constitutes a bet‐hedging. We used Atlantic cod (Gadus morhua) as the study species and parameterised an eco‐evolutionary model, using empirical data on size‐related reproductive and survival traits. To evaluate the fitness benefits of multiple‐batch spawning (within a single breeding period), the mechanistic model separately simulated multiple‐batch and single‐batch spawning populations under temporally varying environments. We followed the arithmetic and geometric mean fitness associated with both strategies and quantified the mean changes in fitness under several environmental stochasticity levels. We found that, by spreading the environmental risk among batches, multiple‐batch spawning increases fitness under fluctuating environmental conditions. The multiple‐batch spawning trait is, thus, advantageous and acts as a bet‐hedging strategy when the environment is exceptionally unpredictable. Our research identifies an analytically flexible, stochastic, life‐history modelling approach to explore the fitness consequences of a risk‐spreading strategy and elucidates the importance of evolutionary applications to life‐history diversity.

Keywords: Atlantic cod; environmental changes; adaptation (change); life cycle (natural science); condition; reproduction (biology); reproductive behaviour

Free keywords: Atlantic cod; bet‐hedging; environmental stochasticity; fitness; multiple‐batch spawning; risk‐spreading

Contributing organizations

Ministry reporting: No, publication in press

Preliminary JUFO rating: 2

Last updated on 2021-09-06 at 14:30