A1 Journal article (refereed)
Uniformization with Infinitesimally Metric Measures (2021)


Rajala, K., Rasimus, M., & Romney, M. (2021). Uniformization with Infinitesimally Metric Measures. Journal of Geometric Analysis, 31(11), 11445-11470. https://doi.org/10.1007/s12220-021-00689-y


JYU authors or editors


Publication details

All authors or editorsRajala, Kai; Rasimus, Martti; Romney, Matthew

Journal or seriesJournal of Geometric Analysis

ISSN1050-6926

eISSN1559-002X

Publication year2021

Publication date26/05/2021

Volume31

Issue number11

Pages range11445-11470

PublisherSpringer

Publication countryUnited States

Publication languageEnglish

DOIhttps://doi.org/10.1007/s12220-021-00689-y

Publication open accessOpenly available

Publication channel open accessPartially open access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/78803

Publication is parallel publishedhttps://arxiv.org/abs/1907.07124


Abstract

We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, whose definition involves deforming lengths of curves by μμ. We show that if μμ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a μμ-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.


Keywordscomplex analysismeasure theorymetric spaces

Free keywordsmetric doubling measure; quasiconformal mapping; quasisymmetric mapping; conformal modulus


Contributing organizations


Ministry reportingYes

VIRTA submission year2021

JUFO rating2


Last updated on 2024-12-10 at 10:45