A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Fast Green’s Function Method for Ultrafast Electron-Boson Dynamics (2021)

Karlsson, D., van Leeuwen, R., Pavlyukh, Y., Perfetto, E., & Stefanucci, G. (2021). Fast Green’s Function Method for Ultrafast Electron-Boson Dynamics. Physical Review Letters, 127(3), Article 036402. https://doi.org/10.1103/PhysRevLett.127.036402

JYU-tekijät tai -toimittajat

Julkaisun tiedot

Julkaisun kaikki tekijät tai toimittajat: Karlsson, Daniel; van Leeuwen, Robert; Pavlyukh, Yaroslav; Perfetto, Enrico; Stefanucci, Gianluca

Lehti tai sarja: Physical Review Letters

ISSN: 0031-9007

eISSN: 1079-7114

Julkaisuvuosi: 2021

Volyymi: 127

Lehden numero: 3

Artikkelinumero: 036402

Kustantaja: American Physical Society (APS)

Julkaisumaa: Yhdysvallat (USA)

Julkaisun kieli: englanti

DOI: https://doi.org/10.1103/PhysRevLett.127.036402

Julkaisun avoin saatavuus: Ei avoin

Julkaisukanavan avoin saatavuus:

Julkaisu on rinnakkaistallennettu (JYX): https://jyx.jyu.fi/handle/123456789/77165

Julkaisu on rinnakkaistallennettu: https://arxiv.org/abs/2006.14965


The interaction of electrons with quantized phonons and photons underlies the ultrafast dynamics of systems ranging from molecules to solids, and it gives rise to a plethora of physical phenomena experimentally accessible using time-resolved techniques. Green’s function methods offer an invaluable interpretation tool since scattering mechanisms of growing complexity can be selectively incorporated in the theory. Currently, however, real-time Green’s function simulations are either prohibitively expensive due to the cubic scaling with the propagation time or do neglect the feedback of electrons on the bosons, thus violating energy conservation. We put forward a computationally efficient Green’s function scheme which overcomes both limitations. The numerical effort scales linearly with the propagation time while the simultaneous dressing of electrons and bosons guarantees the fulfillment of all fundamental conservation laws. We present a real-time study of the phonon-driven relaxation dynamics in an optically excited narrow band-gap insulator, highlighting the nonthermal behavior of the phononic degrees of freedom. Our formulation paves the way to first-principles simulations of electron-boson systems with unprecedented long propagation times.

YSO-asiasanat: kvanttifysiikka; elektronit; bosonit; fononit; simulointi; laskennallinen tiede

Liittyvät organisaatiot


Hankkeet, joissa julkaisu on tehty

OKM-raportointi: Kyllä

Alustava JUFO-taso: 3

Viimeisin päivitys 2021-16-07 klo 10:52