A1 Journal article (refereed)
Functional a posteriori error estimates for boundary element methods (2021)

Kurz, S., Pauly, D., Praetorius, D., Repin, S., & Sebastian, D. (2021). Functional a posteriori error estimates for boundary element methods. Numerische Mathematik, 147(4), 937-966. https://doi.org/10.1007/s00211-021-01188-6

JYU authors or editors

Publication details

All authors or editorsKurz, Stefan; Pauly, Dirk; Praetorius, Dirk; Repin, Sergey; Sebastian, Daniel

Journal or seriesNumerische Mathematik



Publication year2021

Publication date18/03/2021


Issue number4

Pages range937-966


Publication countryGermany

Publication languageEnglish


Publication open accessOpenly available

Publication channel open accessPartially open access channel

Publication is parallel published (JYX)https://jyx.jyu.fi/handle/123456789/74737

Web address of parallel published publication (pre-print)https://arxiv.org/abs/1912.05789


Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.

Keywordsnumerical analysispartial differential equationserror analysis

Free keywordsboundary element method; functional a posteriori error estimate; adaptive mesh-refinement

Contributing organizations

Ministry reportingYes

Reporting Year2021

JUFO rating3

Last updated on 2024-22-04 at 21:47