Geometric Aspects of Sobolev Space Theory (GeoSobo)
Main funder
Funder's project number: 314789
Funds granted by main funder (€)
- 600 000,00
Funding program
Project timetable
Project start date: 01/09/2018
Project end date: 31/08/2022
Summary
The purpose of the project is to find new connections of Sobolev spaces theory with geometry and regularity in Euclidean spaces and in more general metric measure spaces. We study curvature, regularity of harmonic functions, differentiability of Lipschitz maps, removable sets and extension domains.
Principal Investigator
Primary responsible unit
Related publications and other outputs
- Dimension estimate for the two-sided points of planar Sobolev extension domains (2023) Takanen, Jyrki; A1; OA
- Dimension estimates for the boundary of planar Sobolev extension domains (2023) Lučić, Danka; et al.; A1; OA
- Equivalent Definitions of Very Strict CD(K,N) -spaces (2023) Schultz, Timo; A1; OA
- Non-Hilbertian tangents to Hilbertian spaces (2023) Lučić, Danka; et al.; A1; OA
- Removability of product sets for Sobolev functions in the plane (2023) Bindini, Ugo; et al.; A1; OA
- The metric-valued Lebesgue differentiation theorem in measure spaces and its applications (2023) Lučić, Danka; et al.; A1; OA
- Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds (2023) Le Donne, Enrico; et al.; A1; OA
- Abstract and concrete tangent modules on Lipschitz differentiability spaces (2022) Ikonen, Toni; et al.; A1; OA
- Bi-Lipschitz invariance of planar BV- and W1,1-extension domains (2022) García-Bravo, Miguel; et al.; A1; OA
- Direct limits of infinite-dimensional Carnot groups (2022) Moisala, Terhi; et al.; A1; OA